Impact of carbon metabolism on 13C signatures of cyanobacteria and green non-sulfur-like bacteria inhabiting a microbial mat from an alkaline siliceous hot spring in Yellowstone National Park (USA).

نویسندگان

  • Marcel T J van der Meer
  • Stefan Schouten
  • Jaap S Sinninghe Damsté
  • David M Ward
چکیده

Alkaline siliceous hot spring microbial mats in Yellowstone National Park are composed of two dominant phototropic groups, cyanobacteria and green non-sulfur-like bacteria (GNSLB). While cyanobacteria are thought to cross-feed low-molecular-weight organic compounds to support photoheterotrophic metabolism in GNSLB, it is unclear how this could lead to the heavier stable carbon isotopic signatures in GNSLB lipids compared with cyanobacterial lipids found in previous studies. The two groups of phototrophs were separated using percoll density gradient centrifugation and subsequent lipid and stable carbon isotopic analysis revealed that we obtained fractions with a approximately 60-fold enrichment in cyanobacterial and an approximately twofold enrichment in GNSLB biomass, respectively, compared with the mat itself. This technique was used to study the diel cycling and 13C content of the glucose pools in and the uptake of 13C-bicarbonate by the cyanobacteria and GNSLB, as well as the transfer of incorporated 13C from cyanobacteria to GNSLB. The results show that cyanobacteria have the highest bicarbonate uptake rates and accumulate glucose during the afternoon in full light conditions. In contrast, GNSLB have relatively higher bicarbonate uptake rates compared with cyanobacteria in the morning at low light levels. During the night GNSLB take up carbon that is likely derived through fermentation of cyanobacterial glucose enriched in 13C. The assimilation of 13C-enriched cyanobacterial carbon may thus lead to enriched 13C-contents of GNSLB cell components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diel variations in carbon metabolism by green nonsulfur-like bacteria in alkaline siliceous hot spring microbial mats from Yellowstone National Park.

Green nonsulfur-like bacteria (GNSLB) in hot spring microbial mats are thought to be mainly photoheterotrophic, using cyanobacterial metabolites as carbon sources. However, the stable carbon isotopic composition of typical Chloroflexus and Roseiflexus lipids suggests photoautotrophic metabolism of GNSLB. One possible explanation for this apparent discrepancy might be that GNSLB fix inorganic ca...

متن کامل

Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community.

Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene segments was used to profile microbial populations inhabiting different temperature regions in the microbial mat community of Octopus Spring, Yellowstone National Park. DGGE allowed a rapid evaluation of the distributions of amplifiable sequence types. Profiles were essentially identical within regions of the mat defi...

متن کامل

Influence of molecular resolution on sequence-based discovery of ecological diversity among Synechococcus populations in an alkaline siliceous hot spring microbial mat.

Previous research has shown that sequences of 16S rRNA genes and 16S-23S rRNA internal transcribed spacer regions may not have enough genetic resolution to define all ecologically distinct Synechococcus populations (ecotypes) inhabiting alkaline, siliceous hot spring microbial mats. To achieve higher molecular resolution, we studied sequence variation in three protein-encoding loci sampled by P...

متن کامل

Diversity of phototrophic bacteria in microbial mats from Arctic hot springs (Greenland).

We investigated the genotypic diversity of oxygenic and anoxygenic phototrophic microorganisms in microbial mat samples collected from three hot spring localities on the east coast of Greenland. These hot springs harbour unique Arctic microbial ecosystems that have never been studied in detail before. Specific oligonucleotide primers for cyanobacteria, purple sulfur bacteria, green sulfur bacte...

متن کامل

Compound-specific isotopic fractionation patterns suggest different carbon metabolisms among Chloroflexus-like bacteria in hot-spring microbial mats.

Stable carbon isotope fractionations between dissolved inorganic carbon and lipid biomarkers suggest photoautotrophy by Chloroflexus-like organisms in sulfidic and nonsulfidic Yellowstone hot springs. Where co-occurring, cyanobacteria appear to cross-feed Chloroflexus-like organisms supporting photoheterotrophy as well, although the relatively small 13C fractionation associated with cyanobacter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental microbiology

دوره 9 2  شماره 

صفحات  -

تاریخ انتشار 2007